Special Topic: Medication and Physics

1. Introduction

The mechanism of life can be associated with electromagnetism and nuclear physics.

What is nuclear physics?

- This is the physics inside a nucleus, which contains protons and neutrons.
- ♦ Between protons and neutrons, there are different properties other than electromagnetism. → Nuclear Force (radiation, spins, etc.)

What is the relationship between medications and nuclear physics?

For a medication, if you use one of those, it is generally called **Nuclear Medicine**.

What are other important physics for the medication?

Electromagnetism, electromagnetic inductions, electromagnetic waves, optics

♦------

2. Examples for Medical Devices & Treatments

a) MRI (Magnetic Resonance Imaging)

 \rightarrow The good capability of obtaining the images for soft tissues

→ Safer than others (e.g. x-rays, etc.) Proton itself has a magnetic moment.

 \rightarrow Using an external magnetic field, the spin of proton gets <u>resonated</u>.

b) **PET** (Positron Emission Tomography)

The good capability of detecting the specific diseases, and diagnosing the specific organs

Nuclide	Production	Common beam	Diagnostic
(half-life)	reactions	energies (MeV)	uses
¹¹ C	$^{14}N(p, \alpha)^{11}C$	14	Dopamine binding (brain)
(20.4 m)			Heart metabolism
			Amino acid metabolism
			(cancer detection)
^{13}N	${}^{16}O(p, \alpha)^{13} N$	20	Heart blood flow
(10.0 m)	$^{13}C(p, n)^{13} N$	8	Protein Synthesis
¹⁵ O	$^{14}N(d, n)^{15}O$	8	Brain blood flow
(2.0 m)	$^{15}N(p, n)^{15}O$	8	Oxygen metabolism
	${}^{16}\text{O}(\text{p, pn})^{15}\text{ O}$	29	Blood volume
¹⁸ F	$^{18}O(p, n)^{18} F$	14	Glucose metabolism (all tissues)
(109.8 m)	20 Ne(d, α) ¹⁸ F	14	Dopamine synthesis (brain)

Table: Common	radionuclides	used in	PET
---------------	---------------	---------	-----

✤ For the procedure,

O Ingest radionuclides (${}^{11}C$, ${}^{13}N$, ${}^{15}O$, and ${}^{18}F$) in your body.

^② Go into the detectors.

⁽³⁾ The radionuclides spontaneously emit γ -rays, and the detectors catch them.

c) X-rays

Electromagnetic Waves

- The property: X-rays are absorbed by the dense structure of bone much more than by soft tissue.
- ●[™] It is safe, but still radioactive.

d) Fiberscope
 Total internal reflection (Optics)

 As a Technology
 CT (Computed Tomography)

 → It is the technology to obtain two- or

Patient

three-dimensional images.

c.f. CAT (Computed Axial Tomography)

3. Cancer Treatment with Proton Beam

To destroy cancer cells, proton beam (protons with kinetic energy) is utilized for this treatment.

Detector

★ Preparation:

Use an idea of electric potential V

A proton gets a speed with a potential difference.

Use an idea of the Lorentz force

Using a magnetic field, the proton goes a circular orbit, and it is accelerated a longer distance in small space.

 \Rightarrow The equipment is called <u>cyclotron</u>.

Ring of detectors

★The advantages of proton beam for cancer treatment:

 \rightarrow It reaches the appropriate position of tumor with appropriate energy.

 \rightarrow It does not destroy other healthy cells.

• Cancers and other diseases for the proton beam treatment:

Brain and spinal cord	 <u>Isolated brain metastases</u> <u>Pituitary adenomas</u> Arteriovenous malformations (AVMs)
Base of skull	 <u>Meningiomas</u> <u>Acoustic neuromas</u> <u>Chordomas and chondrosarcomas</u>
Eye	≻ <u>Uveal melanomas</u> ≻ <u>Macular degeneration</u>
Head and neck	► <u>Nasopharynx</u> ► <u>Oropharynx (locally advanced)</u>
Chest and abdomen	 Medically inoperable non-small-cell lung cancer Chordomas and chondrosarcomas
Pelvis	 <u>Prostate</u> <u>Chordomas and chondrosarcomas</u>
Tumors in children	 <u>Brain</u> <u>Orbital and ocular tumors</u> <u>Sarcomas of the base of skull and spine</u>

References

Physics Today, September 2002 Nuclear Physics, by John Lilley, Wiley